Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text
نویسندگان
چکیده
In order for relation extraction systems to obtain human-level performance, they must be able to incorporate relational patterns inherent in the data (for example, that one’s sister is likely one’s mother’s daughter, or that children are likely to attend the same college as their parents). Hand-coding such knowledge can be time-consuming and inadequate. Additionally, there may exist many interesting, unknown relational patterns that both improve extraction performance and provide insight into text. We describe a probabilistic extraction model that provides mutual benefits to both “top-down” relational pattern discovery and “bottom-up” relation extraction.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملLiterature Mining using Bayesian Networks
In biomedical domains, free text electronic literature is an important resource for knowledge discovery and acquisition, particularly to provide a priori components for evaluating or learning domain models. Aiming at the automated extraction of this prior knowledge we discuss the types of uncertainties in a domain with respect to causal mechanisms, formulate assumptions about their report in sc...
متن کاملExtraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques
Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...
متن کاملExtraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques
Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006